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The problems with emalil tables of
contents alerts

 Small fraction of articles relevant

 Hence alerts go unread

e To read abstracts and articles, researcher
has to deal with a variety of journal-specific
Interfaces

e Setting up tables of contents alerts requires
dealing with multiple websites too



A solution

e Collect the latest journal tables of contents
from a database (PUBMED)

* Use machine learning algorithm trained by
user to rank articles in order of interest

e Helpful GUI to displays abstracts, give easy
access to PDFs, save references in BibTeX

 Which machine learning algorithm?
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Naive Bayes Algorithm

Classcelinteresting, boring |

Documentd comprises N  instancesof wordw

Likelihood of generatingdocumentd given class c:

(d|C>OCH p<W|C)N
P LN
(Multinomial formula;independence; bagof words)

p(d|c)pl(c )
Zp (d|c')p

Estimate p(w|c) and p(c) from document set D

Bayes: p(c



Different Fields

e Titles, abstract and authors contain

different types of information 6
e Some articles contain only title &

author information

- e.g. Nature N&V, ZETOC alerts
* Hence have combine separate
conditional probability tables

- Bayesian chain rule



Testing performance (I)

e Corpus of 2662 articles, 1047 with empty
abstracts collected over 10-week period of
testing software

e 218 interesting articles, 2444 boring
* Ten by tenfold crossvalidation procedure

* Naive Bayes (ifile implementation)



Nailve Bayes: title and abstract
(lumped together)
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Nalve Bayes — titles only
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Nalve Bayes — titles and authors
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Nalve Bayes — Abstracts and
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NB Titles + Abstracts + Authors
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Nalve Bayes — occurrence vs
counts

ifile-ti-ab-chain-occ ROC
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Can we do better?

 Work by Nigram et al. suggests that the
Maximum Entropy algorithm outperforms
Nalve Bayes



Maximum Entropy

* Choose a model that Is consistent with the
facts, but otherwise as uniform as possible

- Modern formulation due to Jaynes, see also
“Principle of Insufficient Reason” (Laplace),
Occam’s Razor...

* e.g. If we have no information about
document, assign 50% chance of it being
Interesting or boring



Features
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Constraints

e Qur distribution of class conditional on
document should match expected value of
each feature In data:

Zf ] plef
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Maximum entropy

e Conditional entropy of distribution should be
maximised subject to constraints

Zp (c|d)log p(c|d)



Solution

* The distribution has the exponential form

__1 Ao old o)
P(C|d)—Z<d>£[ie/

—
_—

* The parameters a‘ré adjusted to maximise the
(log) likelihood of the data. This also
maximises the entropy.

[(D)=log | ] p(c(d)|a)

deD



Nalve Bayes versus MaxEnt

Naive Bayes MaxEnt

pleld)cp(e)]] pwle)™ p<c|d)OCl:[€AW’CNW

Parameters derived

directly from Number of

training data times w
appearsind



Testing performance (l1)

 Similar to before, but only consider articles
with abstracts, hence 1615 articles in corpus

* Test using open source, Java-based
MALLET library implementations of various
algorithms



Naive Bayes, Decision Trees,
Maxent

abstract-1 ROC
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Why does MaxEnt perform better?

* No independence assumptions (Nigram et al)

- e.g. Nalve Bayes would count both Boltzman
and machine in Boltzman machine

- MaxEnt will discount the weights for these
features so that their weight towards
classification is approximately half

e Other reasons?



Conclusions

e MaxEnt and Naive Bayes cut down on the
number of uninteresting articles to be
skimmed for finding a given fraction of
Interesting articles

- Is the improvement worthwhile?

* MaxEnt > Nalve Bayes



The future?

* Already open source project on sourceforge
- Put MaxEnt version there
e Algorithm improvements anyone?

- Star rating system?
- Performance improvements

e More data sources?



